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— It will take people ten years to forget!

— It will indeed be honored across two epochs!

Marina I. Tsvetaeva

On 12 December, 2017, Professor Yuri Borisovich
Yurov (Fig. 1) passed away peacefully at the Federal
Scientific Clinical Center for Resuscitation and Rehabilita-
tion, a renowned resuscitation/rehabilitation institute
located not far from Moscow. The tragic, albeit inevitable,
ending of Yuri’s courageous fight against a devastating
cancer has suddenly stricken all his colleagues and friends.
Our deepest sorrow has paralyzed our capacity to do any-
thing, leading us to recognize the vital need for reevaluat-
ing Yuri’s scientific and personal legacy.
Yuri’s life is an example of unselfish devotion to bio-

science. His contribution to genetics and practical medi-
cine is hard to estimate. It is truly immense! Since Yuri’s
personality can be defined using such epithets as “bright
intelligence”, “overwhelming kindness”, and, especially,
“extreme modesty”, it is not surprising that he was always
skeptical about “aggressive public relations efforts” to
advance careers and theories, which are so popular in
modern biomedicine. Thus, one should not be surprised
about the lack of annoyingly large lists of his awards,
honors, commitments, etc. Certainly, Yuri’s research was
awarded local and international prizes and grants from
time to time. These, however, are a poor reward for his
tremendous endeavors to organize, undertake, and present
such a groundbreaking body of work. To redress this
historical injustice, we decided to describe Yuri’s life in a
biographical review instead of a traditional obituary lim-
ited to a short rueful notification. We do hope that our ef-
fort to share the experience of being alongside this
brilliant researcher and bright person gives a succinct

understanding of Yuri’s profound, albeit non-explicit, im-
pact on biomedicine and neuroscience.
Yuri was born on 11 December, 1951, in Zhukovsky, a

city near Moscow known as a home to several major
research institutes involved in designing aircraft, to a
family of an engineer-researcher. While graduating from
school, he chose biology as a field of further higher
education. Today, we know that it was a good choice.
His admission to the Faculty of Biology at Lomonosov
Moscow State University was associated with a story
that picturesquely exposes the essence of Yuri’s personality.
The initial results of the matriculation examination did not
allow his admission to the biological faculty of Lomonosov
Moscow State University, but still allowed him to enter the
Faculty of Biology at Moscow State Pedagogical Institute.
Later on, he unintentionally told his father that he is “100%
sure” to pass the matriculation examination at Lomonosov
Moscow State University. His father decided to appeal to
the university in this regard, which revealed that Yuri was
right. As a result, he was admitted to the faculty of biology
at Lomonosov Moscow State University. There, he made
the ultimate decision to become a researcher in genetics.
In the beginning, Yuri studied DNA replication [1].

Initially, his research was performed at Kurchatov’s Institute
of Moscow with Dr. Evgenii Ananiev, a recognized Russian
geneticist who contributed to the research of mobile
genetic elements and plant chromosomes [2, 3]. He
pursued the research of DNA replication at Institute of
Medical Genetics (Academy of Medical Sciences of the
USSR, Moscow) and made appreciable progress thereof
[4–10]. In 1977, Yuri defended his Ph.D-thesis “Replica-
tional organization of chromosomal DNA in cultured
normal and abnormal cells of humans and animals”.
However, he was obliged to cease studying DNA repli-
cation. As we previously implied, Yuri was completely
disinterested in backroom intrigues and local politics.
This was not the case for the majority of group leaders
and administration representatives at the medical gen-
etics institutes at the end of seventies and beginning of
the eighties. Fortunately, psychiatric genetics was a re-
search focus of the All-Union Mental Health Research
Center (Academy of Medical Sciences of the USSR,
Moscow), where Yuri was invited to develop new

* Correspondence: ivan.iourov@gmail.com
1Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental
Health Research Center, Zagorodnoe shosse 2/16, 117152 Moscow, Russia
2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov
Russian National Research Medical University, Ministry of Health of Russian
Federation, Moscow 125412, Russia

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Iourov and Vorsanova Molecular Cytogenetics  (2018) 11:36 
https://doi.org/10.1186/s13039-018-0383-3

mailto:ivan.iourov@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


techniques for studying the human genome at the
chromosomal level in brain disorders by Professor
Marat E. Vartanian, who had then become the head of
this center. Henceforth, his research career would be
tightly linked to Mental Health Research Center, where
he successfully completed his doctoral dissertation for
receiving the degree of Doctor of Science (the highest
academic degree achieved through defending a thesis
significantly more voluminous than a canonical Ph.D
thesis) — “Molecular cytogenetics of heterochromatic
regions in the human genome” — and became the head
of the Cytogenetics Laboratory (laboratory of cytogen-
etics and genomics of mental disorders).
So began Yuri’s molecular cytogenetic odyssey. He was

among the first researchers in the world to develop a
technique of in situ hybridization with cloned DNA se-
quences for the analysis of human chromosomes [11].
Almost immediately, the results of these developments
were found applicable for molecular cytogenetic diagnosis
of chromosomal abnormalities. Unfortunately, the article
describing these applications was published two years later
after the submission along with other articles reporting
similar results [12]. His molecular cytogenetic studies were
based on a part of his immense research activity referred to

molecular, cytogenetic and evolutionary analysis of alpha
satellite DNA and constitutive heterochromatin [13–19].
Evolutionary molecular (cyto)genetic studies have also
underlined long-standing friendship and collaboration with
Professor Gérard Roizès (Institut de Biologie, Montpel-
lier, France) [20], with whose team (équipe) he worked
for several years. During this period, he had a family
tragedy. His stepson — Dr. Ilia V. Soloviev, a prodigious
young researcher and a pioneer of molecular cytogenet-
ics and cytogenetic genome research, whose brilliant
work and original ideas still form research directions in
our labs — tragically passed away. This sorrow led to
re-assessing life priorities. More intense research was
undertaken to decrease the suffering.
Inspired by the first success of his molecular cytogenetic

research and diagnosis [21–25], Yuri together with his clos-
est colleagues undertook further studies to increase the effi-
ciency and scope of molecular cytogenetics. Thus, a series
of (ultra) rapid fluorescence in situ hybridization (FISH)
protocols was proposed [26, 27]. One rapid protocol, based
on microwave activation [26], was developed 10-15 years
before the introduction of such approaches to diagnostic
and research practice. Additionally, FISH-based molecular
cytogenetic techniques for the identification of marker
chromosomes were proposed [28–30]. At that time, the
essential issue of Yuri’s research was the creation of an
original DNA probe collection [16, 17, 31], which formed a
firm basis for almost all our further studies and develop-
ments in molecular cytogenetics. For instance, interphase
detection of chromosome 21 aneuploidy for prenatal diag-
nosis was significantly improved [27, 32]. Multicolor inter-
phase FISH with centromeric (chromosome-enumeration)
DNA probes was the next major breakthrough of research
headed by Yuri [33]. This technique is still very popular
and is actually the most direct way to analyze numerical
chromosomal changes in large cellular populations at
single-cell level. It was also found applicable for studying
sperm providing new opportunities for reproductive genet-
ics [34]. These studies can be designated as the main basis
for the first generation interphase (molecular) cytogenetics
developments allowing the analysis of chromosomal
loci or ambiguous/amorphous chromosome territories
(chromosomal parts’ territories) without an integral view
of the whole interphase chromosomes.
Another layer of Yuri’s research is represented by

studying X-linked diseases [35–37], more precisely, Rett
syndrome. The studies of Rett syndrome performed
with his participation were global [38, 39]. These included
the confirmation of an X-linked nature of the syndrome
[40–42], mutational analysis in Russian Rett syndrome
cohorts [43], uncovering pathoepigenetic mechanisms
specific for Rett syndrome (i.e. alterations to chromo-
somal DNA replication, X-linked bi-allelic expression,
parent-of-origin-like effects on X chromosome inactivation)

Fig. 1 Yuri B. Yurov (1951-2017)
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[40–42, 44–46], and discovering the microdeletion nature
of MECP2-mutation negative Rett syndrome cases [47, 48].
The success of Rett syndrome studies culminated in 2016,
when the VIII World Rett Syndrome Congress (scientific-
ally organized with active Yuri’s participation) was held in
Kazan, Russia. The congress highlighted true success and
recognition of Rett syndrome research in Russia, which
is, in turn, the result of Yuri’s efforts. Regretfully, due
to numerous unexpected problems, we have not still
published the article describing this congress. Nonethe-
less, we await this article to be published in Molecular
Cytogenetics soon.
Yuri’s original collection of DNA probes was found

useful in numerous studies performed by our labs and
his collaborators all over the world. These studies in-
cluded, but were not limited to, analyses of chromo-
somal abnormalities and instability (mosaicism) in a
variety of human tissues [49–52], mapping breakpoints
of structural chromosome rearrangements [52–55], dis-
covering the role of chromosomal mosaicism (mosaic
aneuploidy and polyploidy) in spontaneous abortion [56–
60]. However, there was a real need to widen the spectrum
of molecular cytogenetic techniques, especially for studying
interphase chromosomes and genomic (chromosomal) vari-
ations at single-cell level in different tissues [61–65]. In this
context, it is to mention one of the major theoretical contri-
butions to bioscience made by Yuri.
It has been postulated without any evidence that all

cells of an organism possess identical genomes. Taking
into account simply the amount of mitoses needed to
generate the required amount of cells of an organism,
we inevitably come to a conclusion that these postulates
are nonsense. Although the scale of mosaicism in somatic
tissues is to be determined more thoroughly, one had to
admit the existence of overlooked cellular fractions fea-
tured by unshared genomes [66]. Regardless of being pre-
sented as an encyclopedic knowledge [67], intercellular/
somatic genomic variations were more-or-less recognized
as an important mechanism for interindividual diversity in
health and disease during the last few years only. More-
over, we had proposed a neurocytogenetic hypothesis sug-
gesting that genetic mechanisms of brain diseases are
more likely to be related to cellular populations with ab-
normal genomes primarily affecting the brain. In other
words, Yuri insisted that we should perform genetic ana-
lysis of the brain to uncover the mechanisms of central
nervous system diseases [68]. As one can guess, the idea
encountered serious resistance from skeptical ignorance
to aggressive denial. It is rare for a researcher to prefer to
break a tradition to the detriment of its “publicability” and
funding opportunities. When the overwhelming majority
of studies in psychiatric (medical) genetics are made using
DNA isolated from blood, it is naïve to think that such
ideas may be accepted quietly. Yuri did not care much

about it. He preferred creating trends to following trends.
Interestingly, this approach to brain diseases is quite
popular in the latest neuroscience literature, unfortunately
often without appropriate references to the original theor-
etical articles.
To succeed in studying somatic genome variations in

the brain, new molecular cytogenetic techniques were
strongly required. Using positive experience in developing
original computer-assisted analysis of FISH results [69],
we elaborated a quantitative FISH protocol [70, 71]. The
latter was found applicable for analysis of chromosomal
heteromorphisms/pericentromeric regions (i.e. identifica-
tion of parental origins of homologous chromosomes with
efficiency comparable to PCR-based methods) [72], distin-
guishing between interphase chromosome loci pairing or
associations and chromosomal loss [73], and determining
specific genome architecture within human interphase
nuclei [74]. Still, the possibility to see an interphase
chromosome in its integrity was not available. To offer the
opportunity to see a banded interphase chromosome, we
took advantage of a collaboration with Professor Thomas
Liehr (Jena, Germany) for developing a new method for
analysis of interphase chromosomes in their integrity, en-
titled interphase chromosome-specific multicolor banding
(ICS-MCB) [75–78]. Finally, there was a lack of protocols
for obtaining cellular suspensions from postmortem brain
specimens applicable for specific FISH-based approaches
to single-cell interphase chromosome analysis. The prob-
lem was soon solved [79] and became a continuously ap-
plicable method for human molecular neurocytogenetics
[80]. The results of these interphase cytogenetic achieve-
ments were summarized in quite a highly cited (for
non-canonical cytogenetics) review [81] and in quite a
widely read book [82].
Yuri’s idea about the link between pathogenesis of psy-

chiatric, neurodevelopmental, and neurodegenerative
diseases and genetic pathology exclusively affecting the
central nervous system required the knowledge concern-
ing the background rate of sporadic (chromosomal) muta-
tions in the unaffected brain. Under his leadership with
the valuable help of Professor Sergei Kutsev, who provided
the unique specimens, we performed analysis of chromo-
somes in the developing human brain [83–86]. As a result,
it had been sensationally reported that the overall percent-
age of aneuploid cells is 30–35% in the developing brain
indicating aneuploidization and developmental chromo-
somal instability to be an additional pathological mechan-
ism for neuronal genome diversification at molecular and
cellular levels [86]. In the unaffected postnatal brain, these
rates are significantly lower [75, 84, 87, 88].Therefore,
Yuri’s hypothesis was supported at this stage.
Schizophrenia was the first disease considered in the

neurocytogenetic context. Actually, it was the first neu-
rocytogenetic analysis in human with the special
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attention to mosaicism confined to the brain showing
chromosomal abnormalities/instability causative for mental
illness [89]. This is mainly due to the fortunate availability
of the Mental Health Research Center collection of post-
mortem brain specimens managed by Dr. Viktor Vostrikov
and Professor Natalia Uranova (Mental Health Research
Center, Moscow, Russia). Interestingly, somatic mosaicism,
even in a wider sense (i.e. unconfined to a tissue), was not a
focus of psychiatric genetics research at all at that time
[90]. During the next years, Yuri’s neurocytogenetic re-
search of schizophrenia was successful. We were able to
demonstrate the disease association with chromosome
1-specific aneuploidy (instability) and to show the involve-
ment of brain-specific low-level post-zygotic aneuploidy in
schizophrenia and comorbid psychiatric disorders [91–94].
Neurodegenerative diseases were another focus of Yuri’s

neurocytogenetic research [87]. First, Alzheimer’s disease
was found to be associated with aneuploidy confined to the
brain. Moreover, it marked the end of debates about paral-
lels between Alzheimer’s disease and Down syndrome.
Consequently, it was postulated that Alzheimer’s disease is
associated with chromosome 21-specific aneuploidy and
instability in the brain, but it is not a subtype of Down
syndrome (trisomy 21) [87, 95, 96]. This devastating neuro-
degenerative disease is likely to result from a complex
mechanism involving abortive cell cycle re-entry, replica-
tion stress in postmitotic neural cells, genome instability,
and deposition of amyloid beta-peptide [97]. Furthermore,
additional studies showed a link between cytogenetic
markers of aging and Alzheimer’s disease pathogenesis
[98]. Accordingly, numerous hypotheses about mecha-
nisms for Alzheimer’s disease were merged together to
form the Alzheimer’s disease pathogenetic cascade.
The support, provided by Ataxia Telangiectasia Children’s

Project, significantly helped Yuri to pursue his neurocytoge-
netic research of neurodegenerative diseases. Yuri focused
on an intriguing paradox of ataxia telangiectasia: exclusive
cerebellar neurodegeneration [99]. This neurodegenerative
disease was found to exhibit chromosome instability in the
brain [87]. In addition, ataxia telangiectasia also demon-
strated a link between area- and chromosome-specific in-
stability and neurodegeneration [100]. These findings were
then suggested to be a likely basis for the therapeutic
interventions in neurodegenerative diseases mediated
by chromosome instability [101]. Thus, the first evidence
that genome/chromosome instability is able to produce
neurodegeneration, whereas it is generally assumed to be
associated with cancer, was provided.
Parallelly, somatic (cyto)genomic variations were studied

in autism. As a result, it was discovered that somatic
mosaicism (aneuploidy) is a genetic risk factor for autism
[102]. Furthermore, these studies demonstrated an unpre-
cedentedly high prevalence of chromosomal heteromor-
phisms in autistic children [103, 104]. So far, these two

types of genomic variations seem to be the most common
ones in this pervasive neurodevelopmental disorder.
Theoretically, these data were applicable for explaining
the male-to-female ratio in autism [105]. Furthermore,
chromosomal heteromorphisms and instability were
then shown to co-segregate with mental illness in autis-
tic pedigrees [106, 107]. These studies were followed by
neurocytogenetic analysis of the autistic brain. We do
hope to present the results in the nearest future.
This area of Yuri’s research allowed proposing a “global

mosaicism pathway” for human intercellular/interindividual
diversity and disease pathogenesis throughout the ontogeny
[108]. Interestingly, it was associated not only with aneu-
ploidy, but also with structural chromosome abnormalities
(i.e. dynamic mosaicism, tissue- (or sub-tissue) specific mo-
saicism and local tissue-specific increase of chromosome
instability [100, 109]. Furthermore, this “global mosaicism
pathway” highlighted developmental chromosome instabil-
ity as a possible cause of cancer in early childhood [110]. Fi-
nally, the pathway explained cell senescence and aging of
tissues composed of postmitotic cells through the accumu-
lation of somatic (chromosomal) mutations [111]. All these
experimental and theoretical analyses underlined the basis
of molecular cytogenomics, which aggregated and corre-
lated data on heritable and non-heritable (somatic mosai-
cism) genomic variations [112]. It is noteworthy that the
term “cytogenomics” was suggested by Yuri ten years
before it started to be widely used in similar contexts. This
enormous body of research culminated in publishing a spe-
cial issue on somatic genome variations (mosaicism) in
Current Genomics [113]. In that issue, Yuri and colleagues
provided three main directions of studying somatic genome
variations: somatic mosaicism’s role in health and disease
[114], somatic genome variations in the ontogenetic context
[115], and diagnostic issues of studying somatic genome
variability [116]. The paradigm of somatic genomics
was then repeatedly postulated indicating the global
contribution of genome/chromosome instability to brain
diseases [117–120]. Finally, somatic genomic theory sug-
gested a new generalized pathway, linking germline/herit-
able genome variations, somatic mosaicism and
genetic-environmental interactions [121]. Yuri’s research
of somatic genome variations is another example of his
major contribution to bioscience. He did succeed to per-
suade biomedical researchers that genomes of somatic
cells are not identical. So, the human is not a parody of a
huge unicellular organism anymore.
Summarizing the developments in single-cell biology

and data on somatic mosaicism, we immediately found
that systems biology approaches are required for a success-
ful molecular diagnosis and research dedicated to medical
genetics and somatic genomics [122]. We started to use
original systems biology or bioinformatics approaches to
prioritize autism/intellectual disability genes by simple
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protocols [123]. However, more sophisticated approaches
specially elaborated for molecular cytogenetics were soon
found to be required. As a result, a new dimension
(in silico dimension) in molecular cytogenetics was
discovered [124]. In silico molecular cytogenetics was
shown to uncover molecular and cellular mechanisms of
diseases associated with chromosomal imbalances and copy
number variations. Additionally, it became a basis for ori-
ginal algorithms of fusion and network-based classification
of molecular cytogenetic data [125] as well as proposing
global pathways of neuropsychiatric diseases for therapeutic
interventions [126]. These algorithms were success-
fully used for uncovering mechanisms of chromosomal
instability and somatic mosaicism [127, 128]. Moreover, in
silico approaches to chromosomal imbalances are applic-
able for developing successful treatments of chromosomal
abnormalities, which are considered incurable genetic
conditions [129]. To this end, we recently proposed a
practical in silico protocol for molecular cytogenetic diag-
nosis of neuropsychiatric diseases [130]. As one can see,
Yuri made a significant input in clinical (genomic)
bioinformatics. His efforts in this field resulted in signifi-
cant quality of life increase (or even healing) of children
suffering from presumably hopeless genetic diseases.
Yuri’s contribution to practical medicine or more pre-

cisely molecular diagnosis was immense. His diagnostic
research was intimately related to working at laboratory
of molecular cytogenetics of neuropsychiatric diseases at
Veltischev Research and Clinical Institute for Pediatrics
of the Pirogov Russian National Research Medical
University (Institute of Pediatrics and Pediatric Surgery),
Moscow, Russia. Since the late eighties, numerous
reports were published about the increase of diag-
nostic efficiency of molecular cytogenetic techniques
[21, 24, 25, 28, 49–51, 102–107, 112, 116, 117, 130, 131].
For instance, the first Russian array CGH (comparative
genomic hybridization) study of a clinical population was
the result of Yuri’s tremendous efforts [131, 132]. His
diagnostic research was not limited to chromosome
abnormalities and copy number variations. Under Yuri’s
supervision, an approach to molecular diagnosis of epigen-
etic diseases was proposed [133]. This led to a discovery of
a new epigenomic mechanism of neurodevelopmental
diseases in childhood [134]. His approaches to molecular
diagnosis of structural genomic variations in autism and
intellectual disability including uncovering mechanisms
and possible therapies were recently found highly effective
[135]. Finally, it is important to mention that Yuri’s efforts
resulted in elevating the educational level in the field of mo-
lecular genetic diagnosis. Our laboratories receive consistent
thanks of almost all Russian-spoken specialists from all over
the world because of his co-authored books [136–142],
which are the only books describing real cytogenetics, mo-
lecular cytogenetics and cytogenomics in Russian.

The latest results of Yuri’s research formed a firm basis
for molecular cytogenetics earning its well-deserved place
in postgenomic biomedicine. These efforts resulted in a
special issue of Current Genomics, which uncovers new
realities and dimensions of molecular cytogenetics —
cytogenomics or molecular cyto(post)genomics [143]. In
this issue, Yuri and his colleagues reported a part of aneu-
ploidy research in the schizophrenia brain and comorbid
psychiatric disorders [94]. Additionally, our original bio-
informatic techniques were shown to be truly applicable
for basic and applied cytogenomics to uncover molecular,
cellular, physiological and even neuropsychological mech-
anisms of diseases caused by chromosome imbalances
[144]. Furthermore, we proposed an original cytogenomic
hypothesis suggesting that human behavior might be
regulated through changes in proportions of somatic
mosaicism levels resulted from complex interaction
between mutational burden and environment [145].
Unfortunately, the issue was published at that time,
when Yuri was unable to see it (posthumously), even
though its content was prepared in 2016-2017.
A very special part of Yuri’s research life was Molecular

Cytogenetics, the journal founded in 2008 with his essen-
tial participation [146]. It all started as a joke. In 2005,
during a conversation with our good friend and colleague
Professor Thomas Liehr, somebody said that it is always
challenging for a group of independent scientists (i.e. re-
searchers uninvolved in large sophisticated collaborative
webs and hierarchical relationships) to publish an article
containing bold ideas, unique, albeit logic and scientific,
views, and own conclusions in their original form, espe-
cially in the field of cytogenetics. Jokingly, it was said that
there is an easy solution to this problem: one just had to
establish a new journal dedicated to chromosome biology
and molecular cytogenetics based on a principle, some-
thing like “good music for good people” with the only ex-
ception of being a scientific journal. It is well-known that
“there is a grain of truth in every joke”. It was a solution,
but not an easy one. It took three years to begin the jour-
nal. Yuri became one of the Editors-in-Chief as one of the
founders. From that time onwards it took then five years
to receive the first official impact factor [147]. Further
success was achieved when the journal was ranked first
out of all journals specifically dedicated to cytogenetics.
The editorship of Molecular Cytogenetics was Yuri’s
honorable duty. We are only starting to understand the
extent of his contribution to the journal’s success.
Yuri left endless amount of unfinished works, numerous

descriptions of his original ideas and theories, and tens
of thousands of paper sheets containing data. Conse-
quently, it is now our duty to finalize the studies and to
publish the results of his enormous research activity.
We do hope that these publications will appear in the
nearest future.
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It is not a secret that Yuri’s family is the core of team
members of three laboratories which have performed
such a great body of biomedical research. He is a grand-
father of three granddaughters, who remember him as
the kindest and nicest person in the world. Thus, this is
also a grievous personal loss for us, his family.
We miss him a lot! The gap in our life resulted from

this untimely and unacceptable loss cannot be filled. We
would like to express our thanks to all the friends and
colleagues for their kind support. The only thing we can
do now is to multiply and to share the legacy of such an
outstanding researcher as Professor Yuri B. Yurov.
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